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Abstract— We consider the problem of designing synthetic
cells to achieve a complex goal (e.g., mimicking the immune
system by seeking invaders) in a complex environment (e.g.,
the circulatory system), where they might have to change their
control policy, communicate with each other, and deal with
stochasticity including false positives and negatives—all with
minimal capabilities and only a few bits of memory.

We simulate the immune response in cyclic, maze-like envi-
ronments and use targets at unknown locations to represent
invading cells. Using only a few bits of memory, the syn-
thetic cells are programmed to perform a physically-feasible
algorithm with which they update their control policy based
on randomized encounters with other cells. As the synthetic
cells work together to find the target, their interactions as an
ensemble function as a physical implementation of a Bayesian
update. That is, the particles act as a particle filter.

This result provides formal properties about the behavior of
the synthetic cell ensemble that can be used to ensure robustness
and safety. This method of self-organization is evaluated in
simulations, and applied to an actual model of the human
circulatory system.

I. INTRODUCTION

As robot size decreases to the order of a single cell,
previously inconceivable applications and abilities emerge.
These include monitoring of oil and gas conduits [1],
electrophysiological recordings with neural dust motes [2],
minimally invasive medical procedures [3], and much more.
In this work, we investigate the use of synthetic cells to
imitate some of the functionality seen in the immune system.

The immune system protects the body by recognizing
and responding to antigens, which are harmful agents like
viruses, bacteria, and toxins [4]. When white blood cells
find a target, they multiply and send signals to other cells to
communicate their discovery [5]. We show that a group of
synthetic cells can imitate this discovery and communication
behavior by collectively executing a simple algorithm that
manifests itself as a Bayesian update over the control policy
that brings cells to the location of an antigen.

Synthetic cells are microscopic devices with limited sens-
ing, control, and computational capabilities [6]. They can
contain simple circuits that include minimal sensors and very
limited nonvolatile memory—barely a handful of bits [7].
These devices are around 100um in size, rendering classical
computation using a CPU impossible. But simple movement,
sensory, and memory elements can potentially be combined
with a series of physically realizable logical operators to
enable a specific task [8], [9] and communication about how
to achieve that task.
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Fig. 1: A cyclic maze that mimics aspects of the circulatory system. A
group of synthetic cells would require at least three bits each to navigate
through the four paths and record instances of target detection. One of the
paths (10) leads to a juncture where cells might get lost and not return.

A group of synthetic cells can learn to find a target by
beginning with different control policies—indicating how,
and implicitly where, they will explore—and then com-
municating with each other that they have or have not
been successful in detecting a target. After communicating
their success, some synthetic cells will change their control
policies to reflect the successes of others in the group. Thus
the distribution of synthetic cell control policies reflects the
expected location of the target.

This update is similar to a particle filter, where samples
from a distribution are represented by a set of particles, and
each particle has a likelihood weight assigned to it that corre-
sponds to the probability of that particle being sampled from
the distribution. Particle filters also include a resampling step,
to mitigate weight disparity before the weights become too
uneven, which closely mirrors the communication step in this
synthetic cell implementation, as we discuss in Section

In this paper we show how synthetic cells can use simple,
local algorithms and only a few bits of memory to enable
global learning behavior to refine their belief of a target loca-
tion. We also show that this implementation of the ensemble
of synthetic cells is a suboptimal Bayesian filter, where
the control policy of the cells is the decision variable. By
constraining synthetic cells to behave as a Bayesian update,
the group of cells inherits formal properties in the form of
guarantees on asymptotic performance and probabilistically
predictable behavior. These properties will help us to reason
about robustness and safety in task execution. That is, we
are replacing the model of a distributed system with a single
Bayesian filter.

II. RELATED WORK

Literature surveys of previous work on nanotechnology
and mobile microrobots can be found in [7] and [3], re-



spectively. In the discussion of existing challenges associated
with designing miniaturized robots for biomedical applica-
tions, [3] notes that most robots with dimensions less than
1mm use an “off-board” approach where the devices are
externally actuated, sensed, controlled, or powered. In this
work, we employ fully autonomous devices that process
information and act independently of external drivers and
centralized computers.

Research in nanofabrication and synthesis methods have
yielded sophisticated synthetic devices, including particles
that serve a particular function (e.g., light control for
nanoactuation [10], performing clocked, multistage logic
[11], actuation using external magnetic fields [12], [13]),
but not particles possessing autonomous circuitry, logic ma-
nipulation, and information storage [1]. Besides the work
published in [1], [9], existing micro- or nanoparticles do
not autonomously process information when decoupled from
their environment [14], [15]. The particles created in Koman
and Liu et al. [1], [9]A particle filter is a nonparametric
implementation of a Bayes filter that represents a distribution
using a set of random samples drawn from that distribu-
tion [16], [17]. In a particle filter, the samples from the
distribution are called particles. We denote these samples

X, =z 22 .. 2L Each particle z¥ is a hypothesis of
the true wor

are the basis for the synthetic cells proposed in this paper,
and we will make the following assumptions based on this
work:

1) Synthetic cells can guide their own motion either
mechanically [18], by means of elaborate swimming
strategies like rotating helical flagella [19], or (more
likely) chemically [20], [21], through use of Pt-Au
bimetallic rods [22], self-electrophoresis [23], [24],
self-diffusiophoresis [25], or self-thermophoresis [26].

2) Synthetic cells can send and receive communications
optically, using integrated LEDs [27] and solid-state or
organic light emitting diodes [27], [28].

3) Synthetic cells can detect a target by using a chemire-
sistor to recognize the target’s specific chemical ana-

lyte [1], [6], [7].

Safety and robustness guarantees are the most important
qualities for biomedical microrobots operating inside a body.
If devices are to be employed in medical applications, they
must not damage tissues or cause any negative reaction from
the body. One of the primary contributions of the work
in this paper is constraining synthetic cells to behave as a
physical implementation of a Bayesian update, creating a
basis for formal properties and guarantees on their behavior.
This ensures robustness in their performance, which can be
translated to safety guarantees in specific environments.

Many relevant papers on swarm robotics [29] and self-
organized collective decision making [30], [31], [32], [33]
exist, but they generally apply to robot swarms that have
significantly more computation and capabilities than those
presented in this paper. Therefore, the formalisms, perspec-
tives, and strategies presented in these works are informative,

Fig. 2: Left: An example cyclic maze with only two possible paths. Based
on the control policy of each two-bit synthetic cell (a O or a 1), the cell will
follow either the right path or the left path in search of the target x. The
cell uses its second bit to encode whether or not it has detected the target.
Right: A graphical representation of this synthetic cell environment.
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Fig. 3: Each synthetic cell begins with an initial control policy of either
a 1 or a 0, which causes it to turn either left or right in the maze. If the
cell thinks it has found the target, it changes its second bit (its success bit)
to a 1. Due to stochasticity in the environment and the cells, there is the
possibility of a false positive or a false negative. Cells might communicate
in the middle region, shown in purple. (a) If both cells are unsuccessful
they will not communicate any information even if they are within range of
each other. (b) and (c) If one cell is successful and one isn’t, the successful
cell will communicate its policy to the unsuccessful one. (d) If both cells
are successful, one (selected randomly) will listen to the other.
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but not applicable at a scale where agents communicate only
6 bits of information.

III. PROBLEM DEFINITION

1) Environment: Our goal is to mimic the immune re-
sponse, so we simulate a model of the circulatory system [34]
in Section But in this section, we present a simplified,
introductory model. This model consists of a maze, shown
in Fig. [2] with only two possible paths: left or right. The
cells will search for a target, located at the black x.

2) Policy Execution: For this introductory example, each
synthetic cell has only two bits: one for its control policy (1
for left or O for right) and one to indicate whether it has found
the target (1) or not (0). Each cell begins with a randomly
assigned control policy and loops through the maze. They
have a probability of a false positive ps, (detecting the target
when it is not there) and a probability of a false negative
Dfn (not detecting the target when it is there). If a synthetic
cell thinks it has detected the target, it changes its second
bit, which we will call its success bit, to a 1. This policy
execution is illustrated in Fig. [3]

3) Communication: Using methods of optical information
transmission discussed in Section synthetic cells are
capable of local communication when they are within a
certain distance of each other.

When synthetic cells reconvene in the middle of the
maze, there is an opportunity for communication. We use a
parameter p to characterize how many other synthetic cells,



on average, each cell will interact with during one loop of the
maze (no matter what control policy or success bit either cell
has). This parameter p is related to the density of synthetic
cells in the environment, and how likely they are to pass
within communication range of each other.

If two synthetic cells come into contact, a successful cell
(with a 1 for its success bit) will tell an unsuccessful cell
(with a O for its success bit) its “correct” policy—even if it is
successful because of a false positive. If both communicating
synthetic cells are successful, one will listen to the other, but
which one is the listener is randomly chosen. And if both are
unsuccessful they will not tell each other anything. In this
way, the success bit also functions as a read/write bit. If it
is a 0, the cell will listen to others (read) and if it is a 1, the
cell will try to broadcast its policy to others (write). These
different scenarios are depicted in Fig. [3] and a visualization
of this system is shown in the supplementary video.

When synthetic cells enact their simple algorithm of policy
execution, possible target detection, and communication, the
cells all end up with the policy that passes the target. In
Fig. @] the number of synthetic cells with each state are
shown as they loop through the maze multiple times and
communicate with each other between loops. By the ninth
iterate, every cell has the policy that takes it past the target.
This optimal final result always occurs in the case of this
simple maze, as long as py, and py, are sufficiently small
and p > 0. We will investigate bounds on these parameters in
future work. But with more complicated environments and
possibilities (for example, the maze in Fig. [I) it becomes
more difficult to ensure this result. To address this, we
increase the number of bits on each cell, to extend their
capabilities.

IV. SIMULATIONS

We now introduce a more complex example, where each
synthetic cell has three bits and the maze has four possible
paths. The environment is shown in Fig.[I] where the possible
control policies are: 01, which takes the synthetic cells past
the target; 00 and 11, which both loop the cells around the
maze; and 10, which leads the cells down a path that they
have probability p;,s: of never returning from. The goal is
for as many cells as possible to end with the 01 policy, where
they will all be heading toward the target.

The possibility of getting lost adds further complexity to
the system, because not only is the target not reachable with
policy 10, but some cells with that policy will not return
at all. This could be equivalent to different environmental
factors in a body, for example an area with enough acidity
to damage or destroy synthetic cells. In practice, we predict
that there will be many opportunities for synthetic cells to
veer off course and get lost, or to get stuck such that they
can no longer contribute to the goals of the group. As the
magnitude of p;,s; increases, more cells get lost and fewer
are able to reach the target and combat an invading antigen.

Figure [5] shows results for 1000 three-bit synthetic cells
exploring the environment shown in Fig. [T} All but the lost
cells converge to the target policy after 12 iterations.
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Fig. 4: Top: Results of a simulation with 1000 two-bit synthetic cells for 15
iterations (15 loops around the maze shown in Figure Q), with parameters
prp = 0.2, pyp, = 0.2, and p = 1.0. Bottom: Density plots illustrate the
distribution of cells at different time increments. As the cells loop through
the maze, they converge to the policy that takes them past the target.
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Fig. 5: Simulated results for 1000 three-bit synthetic cells executing their
policies and communicating in the maze from Figure m with parameters
prp = 0.2, prn = 0.2, pios¢ = 0.5, and p = 1. Around 800 of them
converge to the correct policy where they will find the target.

A. Farticle Filter

A particle filter is a nonparametric implementation of a
Bayes filter that represents a distribution using a set of
random samples drawn from that distribution [16], [17]. In
a particle filter, the samples from the distribution are called
particles. We denote these samples X, := zl 22 .. 2L
Each particle z% is a hypothesis of the true world state at
time n—in our example, each particle would be a hypothesis
of the policy that leads to the target.

The most basic variant of a particle filter algorithm begins
with the particle set X, and weights w,,, which together
represent a prior distribution. This distribution is sampled,
resulting in L particles Z},_ 4, ..., zL 1. The bar indicates that



Algorithm Comparison

Particle Filter

Prior distribution is described by L particles and their weights
Xn, wn

Distribution is sampled, resulting in L new particles
- - —L
m}t«kl? xiﬂ»h seny xn«kl

Based (Z)n a measuremelzt, weights' are assigned to each particle
Wpi1 = P(Zng1|Zn41)

Resample by drawing with replacement L particles from

weighted set X, 41

Posterior distribution is described by the resampled particles and
their weights
Xn+1, Wn+1

Synthetic Cell Implementation
Prior distribution is described by M policies and success bits
Yo, sn
Cells execute their policies, resulting in M new states
g’rlrl»l, g'r27,+17 L) g'f\z/{kl
Based on its success bit, a cell might broadcast its policy
Smp=0o0r1
Each cell §,';; communicates with p other cell(s). If any cell
has s, 1 = 1, some cell(s) will change their policy.
This approximates resampling as p — M.
Posterior distribution is described by the final synthetic cell
policies and success bits

Yn+17 Sn+1

n the synthetic cell implementation, the measurement z,,1; is the number of cells with each policy. The weight (likelihood of measurement

zZn+1 occurring if hypothesis ‘76,‘,'1“ is true) is calculated by the number of observed particles with the same policy as i?fLH divided by L.
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Fig. 6: Synthetic cell executions for different values of p for 1000 synthetic cells and ps, = 0.1, p, = 0.1, p;os¢ = 0.5. The rightmost panel shows
a particle filter implementation for this system, where the measurements are the current states of the synthetic cells. As p increases, it approximates the
particle filter. Note that the third plot, where p = 10, is nearly identical to the plot of the particle filter weights.

these samples are taken before the measurement has been
incorporated. Next, a measurement 2,1 is obtained, and it
is used to calculate new weights w’ 41 for each particle.
The weight is the probability of the measurement given
each particle, w!,; = P(2,41|Z%,,). Lastly, the particle
filter resamples the distribution by drawing with replace-
ment L particles from the weighted set X,,,;, where the
probability of drawing each particle is given by its weight.
The resampled particles X, 41 =z}, ...,zL, , along with
the weights w,,, represent the posterior distribution—an
updated estimate of which policy leads to the target. Note
that in the case of the synthetic cell ensemble, the particle
filter is estimating discrete states: each particle can only take
one of four different values. There are much more than four
particles, so many particles will hypothesize that the target
is at the same state.

For the synthetic cell implementation, we begin with
random policies (and random success bits) on all of the
synthetic cells, similar to starting with a uniformly distributed
prior distribution. This distribution of M synthetic cells has
discrete states Y, := yl,y2,...,yM. The cells execute their
policies and some return with a success bit, resulting in new
cell states 71, ..., yM . The value of the success bit Spu1
of each cell ¢ ; is a binary implementation of the weight
w1 in a particle filter. Instead of calculating a conditional
probability so that the weights are between 0 and 1, the
weights are either 0 or 1 (before being normalized by the
total number of cells). A cell ;" ; with a 0 success bit will

not communicate its policy to any other cells, meaning, in
particle filter terms, that it will not be sampled from—so its
weight is effectively w;’,; = 0.

For example, consider a situation where there are M
synthetic cells (and M1 synthetic cells with policy 00 and
a 1 for a success bit, M71¢ cells with policy 11 and a 0 for
a success bit, etc.) and p = 1, meaning that each cell will
communicate with one other cell during each loop around
the maze. Cell ;7' ; has a £ probability of communicating
with any other cell ;,, ;, where 1 <4 < M, during a given
cycle. Cell 3, ’s probability of sampling a cell with policy
00 is %, its chance of sampling a cell with policy 01 is
%, and so on. It also has a chance of staying the same,
anytime it communicates with a cell with a 0 success bit,
which occurs with probability M""OJFM‘“OJEM 100+ Migo

This is the main difference between the particle filter
algorithm and the synthetic cell implementation: the syn-
thetic cells have some probability of not resampling, and
just staying the same—unlike particles in a particle filter
which are all resampled, every iteration. This difference is
demonstrated in the Algorithm Comparison box, above. If
each cell always communicated with a random successful
cell, its behavior would be the same as that of a particle
filter. This is illustrated in Fig. [6] The far right panel of Fig.[6]
shows a particle filter applied to the synthetic cell system.
There are L = 1000 particles being randomly sampled from
the synthetic cell distribution (which is also comprised of
M = 1000 cells), and the weights are being updated based




on observations of synthetic cell policies. As p increases,
the amount of resampling increases, and the synthetic cell
behavior is guaranteed to converge to the particle filter
behavior. The physical execution of the group of synthetic
cells approximates the particle filter algorithm.

Similarly, a particle filter approximates a Bayes filter. The
approximation error of a particle filter approaches zero as the
number of particles goes to infinity—the error depends on
the number of particles, not on the resampling. In fact, some
particle filter implementations resample very infrequently, to
reduce the risk of losing diversity [17]. Because the asymp-
totic guarantee on a particle filter approximating a Bayes
filter does not depend on resampling, it consequently holds
for synthetic cells as well. Therefore, since the synthetic cell
implementation approximates a particle filter, and a particle
filter approximates a Bayesian update, we can conclude that
a synthetic cell system using this algorithm approximates a
Bayesian update.

This result, which is illustrated in Fig. [6] guarantees
convergence properties for how synthetic cells will proba-
bilistically behave. These guarantees are valuable because
they can be used to reliably predict how synthetic cells
will perform in new scenarios, and we can be certain of
robustness and safety requirements for physical experiments.

B. Model of the Human Circulatory System

Many models of the human cardiovascular system exist,
including a 36 vessel body tree [35], a lumped parameter
model [36], and a mathematical model featuring both linear
and nonlinear constitutive relations [37]. In this paper, we use
the model from Hardy et al. [34], which clearly defines the
24 different chambers in the circulatory system, as well as
the connections going into and out of each one. This model
is shown in Fig. 7| where each number represents a chamber,
as described in the legend, and the connections depict inputs
and outputs for blood flow. Figure [§| shows how the graphical
representation of the circulatory system can be illustrated as
the same type of maze that was shown in Figures [I] and [2]

0. Left Atrium
1. Left Ventricle
2. Pulmonary arteries
3-8. Pulmonary capillaries
9. Pulmonary veins
10. Right Atrium
11. Right Ventricle
12. Systemic arteries
13-16. Systemic capillaries
17-20. Small veins
21. Veins of the leg
22. Large veins
(including inferior vena cava)

23. Large veins
(including superior vena cava)

Fig. 7: Adapted from Figure 1, Figure 2, Figure 3, and Table 2 in
Hardy et al. [34]. Each number represents a chamber, as described in
the legend. The connections between chambers are inputs and outputs
illustrating blood flow.

Fig. 8: A maze, similar to those in Figures |l and [2| based on the inputs
and outputs of chambers in the circulatory system, shown in Figure [/} Bit
assignments for each path are also shown, to illustrate the 5 bit policies that
describe each of the 28 possible paths through the system.

How much memory does a synthetic cell require to navi-
gate in this environment? The following equation computes
the number of bits, B, required for any cyclic graph.

I

B=1+) ceil(logs(P;)) (1)
i=1

In Eq. [I] B is the number of bits required to navigate
the graph, I is the number of intersections, or diverging
nodes (nodes that have multiple edges leaving them), and
P; is the number of edges leaving each intersection, ¢. The
ceiling function ceil rounds up to the nearest integer, as we
only consider entire bits. One more bit is added to measure
success.

The circulatory system shown in Fig. [/| has I = 2 inter-
sections, at nodes 2 and 12, which have P, =7 and P, = 4
outgoing edges, respectively, and therefore B = 6 bits are
required to solve the graph. The policy bit organization is
shown in Fig.

We simulated synthetic cell executions in this scenario,
where the desired target was in the leg, specifically node 13.
In this circulatory system model, there are many different
policies that will lead to finding the target. It doesn’t matter
how the cells pass through the pulmonary system (states 2—9
in Fig. [7) or the top part of the maze in Fig. [§), as long as
they reach the leg in the end. The results of this simulation
are shown in Fig. [9}

In the previous example, shown in Figs. [I] and [5] we
simulated a probability of getting lost along one of the paths.
This was to acknowledge that in practice, unexpected events
can happen where some synthetic cells will get lost, stuck,
destroyed, or otherwise do not contribute to the group’s
estimate of the target location. We recognize that this can
happen no matter where the cell is, so in this example
we implemented a small p;,s; on every execution of every
synthetic cell. All of the cells, besides the ones that have been
lost to the environment due to p;,s¢, converge to the correct
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Fig. 9: Density plots illustrating the distribution of 1000 six-bit synthetic
cells executing their policies in the maze from Figure @ with parameters
pfp = 0.1, prp = 0.1, and p = 1.0. The target is shown by a yellow star
and the cells with policies that pass by it are shown in blue.

policy by about the twenty sixth iteration. A visualization of
this system is shown in the supplementary video.

C. Moving Targets

In earlier sections, our algorithm was shown to enable
all simulated synthetic cells to converge to a policy that
passed by a stationary target. In this section, we use the
same algorithm to show that moving targets can be found
and communicated, without any additional prior knowledge.

To find a moving target, synthetic cells will have to rely on
a small amount of random exploration and decaying memory.
We model the random exploration as a very small chance of
one of a cell’s bits flipping at any moment (this could also
be considered a cell making a mistake). Decaying memory
enables a cell’s success bit to turn off (back to 0) after some
amount of time has passed since it last detected a target.
We know from [1], [9] that this is physically feasible, given
variable chemical decay rates and reactions that act similarly
to capacitors with a decaying charge.

Figure [I0] shows simulated results for 1000 synthetic cells
navigating through an environment and learning the policies
to keep finding the new location of a target which moves
from node 13 to node 3, and finally to node 20.

V. CONCLUSIONS

This work demonstrated a novel algorithm for self-
organized collective decision-making in synthetic cell en-
sembles. Each synthetic cell only has a few bits of memory
and very simple communication abilities. Despite this, we
show that the cells can use local algorithms to refine their
global belief of how to reach a target location—reflected in
the distribution of the control policies of each cell.

This was applied to a model of the human cardiovascular
system, where the group of cells was able to converge
to the correct policy (apart from those lost to simulated
environmental factors), using only six bits. These same
particles were also able to find and follow a moving target.
The result that only six bits are necessary to function in this
model of the circulatory system demonstrates that even with
very limited computation synthetic cells are a capable system
in an environment as complex as the human body.

We showed that the synthetic cell implementation ap-
proximates a particle filter, and that the only difference
between the two methods is the execution of the resampling
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Fig. 10: Simulated results for 1000 six-bit synthetic cells executing their
policies in the maze from Figure|8} with parameters py, = 0.1, pfy, = 0.1,
and p = 1.0, as they search for a target that moves from node 13 to node
3 to node 20. At nine instances in time (indicated by letters A-I), a density
plot is shown to illustrate the distribution of the cells.

step. Since the asymptotic guarantee on a particle filter
approximating a Bayes filter depends on the number of
particles, and not the resampling, we concluded that the
synthetic cell system is a suboptimal Bayesian filter. This
result constitutes what might be the first decision theoretic
model of the immune system, and provides formal properties
for the behavior of this type of synthetic cell ensemble
that can be applied in future work with different tasks,
environments, and decision variables.

In the future, we will pursue different elements of this
work, including encoding the need to explore (e.g., if the
correct policy is not known to any cells in the ensemble, or
if the target has been successfully destroyed). To do this we
will borrow methods from [38], which demonstrates effective
algorithms for path planning of long excursions that agents
may not return from. We also intend to implement these
results experimentally in the near future.
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