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Abstract—The immune system protects the body by recogniz-
ing and reacting to foreign invaders, known as antigens. When
white blood cells find an antigen, they multiply and communicate
among themselves to collectively carry out an immune response.
Recent advances in the design of active synthetic cells and
active Brownian particles have shown that artificial microscopic
agents are cable of rudimentary communication, computation
and locomotion in response to stimuli. We consider the prob-
lem of designing robust exploration strategies for collectives
of microscopic agents in a circulatory system. In such an
environment, agents are not guaranteed to have perfect sensing,
reliable communications or be capable of complex locomotion.
Here, we present preliminary efforts in generating locomotion
strategies for ensembles of microscopic agents without onboard
computation. By leveraging advances in embodied computation
and active matter, along with recent results in decentralized
coverage algorithms, we propose a robust algorithm for control
of synthetic cell swarms.

I. INTRODUCTION

Advances in active matter have enabled the construction
of increasingly capable robotic collectives [1], [2]. Ensembles
of agents of sizes on the order of a single human cell
have incredible potential for a variety of applications. These
include autonomous monitoring of oil and gas conduits [3],
eletrophysiological recordings with neural dust motes [4], and
minimally invasive clinical procedures and drug delivery [5].
In this work, we investigate the use of synthetic cells to imitate
some functionality of white blood cells in the human immune
system.

The immune system protects the body by recognizing and
responding to antigens, which are harmful agents such as
viruses, bacteria, and extraneous toxins [6]. When white blood
cells find a target, they multiply and swarm the region of
interest in a collective effort to neutralize the antigen [7]. In
this work, we seek to enable similar functionality in groups of
synthetic cells with limited sensing, computation and actuation
capabilities.

Synthetic cells are microscopic devices (~100um) that may
contain simple circuits for performing rudimentary calcula-
tions along with limited sensing and non-volatile memory [8].
In addition to computational capabilities, synthetic cells can in-
clude ferromagnetic cores to interact either with each other or
with external magnetic fields. Synthetic cells are also capable
of simple locomotion, similar to that of multiflagellar bacteria,
by generating localized bubble jets that propel them in a
given direction [9]. Despite their small size and limitations, by
exploiting synthetic cells’ capabilities we propose that robust
complex collective behaviors can be achieved.
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Fig. 1. Simplified model of the human circulatory system designed to preserve
its fundamental structural properties [10].

In this manuscript, we formalize the problem statement of
antigen localization with a collective of synthetic cells, and
briefly describe distributed algorithmic strategies for solving
this problem while complying with the limitations endemic to
synthetic cells.

II. PROBLEM STATEMENT

The goal for the synthetic cell swarm is to approximately
mimic the human body immune response by localizing an
antigen in a circulatory system.

Environment: We consider a simplified human circulatory
system (see Fig. 1) consisting of 24 discrete states [10].
Each one of these states corresponds to a major structural
component of the circulatory system. Naturally, the graph is
cyclic and consequently there is no corresponding steady state
distribution.

Assumptions: Prior to formally specifying the problem we
must state a series of assumptions that we make about the
capabilities of synthetic cells. First, we will assume that
synthetic cells are capable of sensing which state of the
circulatory graph (Fig. 1) they are currently in. This can
be done with external signaling using electromagnetic fields,
or internally with luminescent or chemical landmarks by
stimulating photodiodes or chemiresistors on the synthetic
cells [3]. Second, we assume that agents have the ability
to leverage their locomotion to choose transitions between
states at forks in the graph, albeit nondeterministically. This is
physically feasible given the directed locomotion demonstrated
in [9]. Third, we assume that each synthetic cell is capable
of storing its individual control policy internally through the
implementation of logical operators and memristors. Finally,
we also make the assumption that synthetic cells are capable
of detecting a given antigen and bonding themselves to it with



some positive probability, either through chemical reactions or
ferromagnetic bonding.

Formal Specification: We will model this problem as a
multi-agent Markov decision process (MDP) over a finite
time horizon, H. We specify the multi-agent MDP as a 5-
tuple, (C,S,A,T,L). The finite set C is the set of all agents
considered, corresponding to distinct synthetic cells in the
system. The state space S is the space depicted by the directed
graph of Fig. 1, and the action space A is the set of all possible
transitions between the elements of S. For an agent c € C, at
each round ¢ € [H], we denote its individual states and actions
as s, and a.,, respectively. Let Pg represent a probability
distribution over the state-space, then the transition model T
is the following mapping 7 : § x A — Ps which describes the
dynamics of agents on the graph [11]. We will additionally
assume that these dynamics are independent between agents
and that the scale of circulatory system components are
sufficiently large compared to individual synthetic cells, such
that there are no interactive effects between agents occupying
the same states. The final component of our MDP specification
is the loss function L, which will be described in detail in the
next section.

III. DISTRIBUTED COVERAGE POLICIES

To solve the antigen localization problem, we propose an
approach in which a set of agents generate distributed coverage
over the circulatory system based on precomputed control
policies requiring no onboard computation other than the
ability to execute an action stored in memory. Given that an
agent can cover the environment and bind itself to an antigen
with a positive probability, localization of the antigen is simply
a consequence of coverage. The primary components of the
proposed solution require finding a suitable coverage metric,
and generating distributed policies that can be encoded in the
finite non-volatile memory of synthetic cells.

Promoting Distributed Coverage: Recent work based on
insights from ergodic theory has considered the problem
of generating coverage deterministically in continuous state
spaces [12], [13]. We apply these insights to generate a loss
function based on a modified finite state space ergodic cover-
age metric. The loss L, that we will consider is the Kullback-
Leibler divergence between a goal distribution over the state-
space, p, and an empirical time-averaged state distribution g;
up to round ¢ between all agents,
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The distribution ¢; is comprised of individual agent compo-
nents such that ¢, = ‘%‘):Cec qc» where each subdistribution
is given by
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Given that we are considering this process over a finite time
horizon H, the total loss is then Lg. Using this loss function
we are able to specify the task of reconstructing a state
space distribution as a function of agent behavior. There is
no requirement for the distribution p to be uniformly random,
allowing one to simply encode a belief over the antigen

location. Additionally, since this loss function can be fully
distributed, the resulting policies can be as well.

Precomputing Coverage Policies: Since synthetic cells are
incapable of online computation, the problem demands a
strict separation of policy learning and policy execution. To
this end, we must learn policies in representations explicitly
amenable to encoding in non-volatile memory. Prior work in
the generation of low-complexity control policies has shown
that it is possible in principle for a system of synthetic
cells to achieve a central objective from precomputed policies
embedded in memory [14]. While the authors in the cited
manuscript construct their policies using concepts from hybrid
control theory to find optimal system actions over a given
time horizon, we will adapt their insights to a reinforcement
learning framework.

Particularly, since our state space is not very large, we can
apply a simple g€-greedy Q-learning approach to optimize agent
actions while exploring the space of policies [15]. In this
context, the Q-function will in fact be a vector-valued function
in RI€I consisting of the individual Q-functions of each agent.
The policy used during learning will be the following

a with p(€)/|A|

n(s) = with p(1 —¢€), )

argmin Q(s,a)
a

where the € is a parameter mixing greedy exploitation with

random action exploration. Here, we update the Q-function

according to the following update law with learning rate «,

and discount y parameters

O(sp,a) «— (1—0)Q(sr,a)+ [L, + v miny Q(st+1,a/)} .4

After the Q-function is resolved, each agent’s individual
policy can be expressed in the following form

7t} (s) = argmin Q}(s,a). (5)
a

However, due to the finite-dimensional nature of the circu-
latory system model, this can be boiled down to a table
of actions to execute in each given state. Thus, as long as
synthetic cells have enough memory to encode their respective
policy tables, they will be able to generate coverage without
any onboard computation by executing their policies in open
loop.

IV. PRELIMINARY RESULTS

In an effort to test the proposed algorithm, we implemented
the model circulatory system environment and simulated syn-
thetic cells as agents walking on a graph. To test the robustness
of our computation-free approach to distributed coverage we
consider two types of environment: deterministic and non-
deterministic. Under ideal conditions synthetic cells would
have the ability to locomote on the graph by deterministically
choosing edges to take between nodes. However, current
state-of-the-art synthetic cells are incapable of deterministic
locomotion. Hence, we must consider stochastic environments
to simultaneously consider practical locomotor limitations
of synthetic cells. and assess the robustness of our learned
policies to inherent process noise.
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Fig. 2. Preliminary results comparing the performance of our learned coverage policies in both deterministic and nondeterministic models of the environment.
The learned policies outperformed uniformly random and constant policies in both environments despite being fundamentally static.

To this end, we conduct a series of simulations where
policies are learned using the €-greedy method outlined in
the previous section. Once the policies are learned, they
are greedily executed. Thus, policies are static and executed
without computations outside of state estimation. In addition
to the learned policies, we implemented a constant policy and
an uniformly random policy to compare against. In constant
policies, all agents execute the same fixed strategy chosen
independent of the goal distribution—this policy should be in-
terpreted as a worst-case scenario. Uniformly random policies
are such that each agent independently chooses a subsequent
edge in the graph uniformly at random.

The goal distribution for all simulations was the following
p(S22) = p(S18) = 0.33, p(S19) = p(S15) = 0.16, with the
remaining probability mass evenly distributed between other
states. To perform optimally, 66% of agents must be sent
towards the head, and 33% must be sent towards the legs at
the fork in state 14 of Fig. 1. This distribution was chosen
such that policies achieving coverage could outperform a
uniformly random policy. Results from the simulations are
shown in Fig. 2, where we track the average loss over 50
trials for 1000 iterations. In both environments the learned
policies outperform constant and uniform policies. Even under
stochastic transition models, the learned, static, distributed
policy performs better than the uniformly randomized policy.

V. DISCUSSION & FUTURE WORK

In this short manuscript we outline a proposed strategy
toward generating motion plans for synthetic cells in a cir-
culatory system, and present preliminary results. Particularly,
we focus on the problem of generating coverage with respect
to a desired state distribution. However, we note that such
a distribution-based specification of the task can be easily
manipulated to encode other behaviors through the desired
goal distribution. Regarding the feasibility of the proposed pro-
cedure, the amount of memory required to encode the coverage

policies is not very large. The proposed circulatory system
description is comprised of 24 states and 34 transitions, which
would lead to a policy table with 816 elements in the worst-
case scenario. However, much of the information encoded in
such a table would be redundant given that there are many
states in the graph arranged in linear chains. Moreover, with
some basic compression procedures the amount of memory
required to encode the policy table could be significantly
reduced depending on the desired distribution.

The primary challenge in deploying motion planning algo-
rithms on real synthetic cells lies in their limited locomotion
capabilities. Current state of the art synthetic cells lack the
control authority needed to deterministically select a path
at a junction or fork on the road. To try to address these
shortcomings in the state-of-the-art, we show that our policies
can be robust to stochasticity in the environment despite being
fundamentally deterministic.

As a final note, since synthetic cells can be manufactured
in batches of very large quantities it may not be desirable to
give each cell an individual policy. Instead, the set C could
describe difference classes of synthetic cells. Then, as long as
the number of synthetic cells belonging to each class is the
same, the empirical time-averaged distribution in Eq. (1) will
be the same.

In future work we will focus on developing modified
strategies that can scale well with the size of the underlying
state space. A promising path forward is to represent state
space distributions in a Fourier space where the coefficients
needed to describe the distribution may be much fewer than
the number of states. Moreover, as a result of a future
collaboration with the authors of [8], we hope to explore
some of the outlined algorithmic strategies in an experimental
system of synthetic cells undergoing flow in an environment
similar to the circulatory system.
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